

Chandigarh Engineering College- CGC, Landran, Mohali

Department of Computer Science and Engineering

Assignment No.1

Subject and Subject code: Database Management Systems (BTCS 501-18)

Semester: 5th

Date on which assignment given: 14/8/2024 Date of submission of assignment: 20/8/2024

Total Marks: 10

Course Outcomes

CO1 Describe relational algebra expressions for a query and optimize the Developed expressions.

CO2 Design the databases using ER method and normalization.

CO3 Construct the SQL queries for Open source and Commercial DBMS.

CO4 Illustrate various methods of organizing data and transaction properties.

CO5
Implement the optimization techniques for security handling and enhance knowledge about advance

databases.

Assignment related to COs
Marks

Distribution

Relevance

to CO No.

Level to

Bloom

Taxonomy

Q1 Differentiate Open source and Commercial DBMS - MYSQL,

ORACLE, DB2 and SQL server.

2.5 CO1 L2

Q2

Draw an E-R model forThe Flight Database (3 marks)

The flight database stores details about an airline’s fleet, flights, and

seat bookings. Again, it’s a hugely simplified version of what a real

airline would use, but the principles are the same.

Consider the following requirements list:

• The airline has one or more airplanes.

• An airplane has a model number, a unique registration number,

and the capacity to take one or more passengers.

• An airplane flight has a unique flight number, a departure airport,

a destination airport, a departure date and time, and an arrival

date and time.

• Each flight is carried out by a single airplane.

2.5 CO1 L3

• A passenger has given names, a surname, and a unique email

address.
A passenger can book a seat on a flight.

Q3 List the different operations of Relational Algebra and Relational

Calculus to retrieve the data from database with examples.

2.5 CO1 L4

Q4 Distinguish between query processing and query optimization with

example. Also explain the cost function for select and join

operations.

2.5 CO2 L5

Solution

Ans. 1

Comparison of Open Source and Commercial DBMS: MySQL, Oracle, DB2, and SQL Server

Database Management Systems (DBMS) can be broadly classified into open-source and commercial

(proprietary) systems. Here is a comparison of MySQL (open source) with Oracle, IBM DB2, and Microsoft

SQL Server (commercial):

Aspect
MySQL (Open

Source)
Oracle (Commercial)

IBM DB2

(Commercial)

SQL Server

(Commercial)

Ownership Oracle Corporation Oracle Corporation IBM Microsoft

License Type

Open-source (GNU

General Public

License), with

commercial options

Proprietary Proprietary Proprietary

Cost

Free for open-source

use; commercial

licenses available for

enterprise features

High licensing and

support costs

High licensing and

support costs

Moderate to high

licensing costs

Platform

Support

Cross-platform

(Windows, Linux,

macOS, etc.)

Cross-platform

(Windows, Linux,

UNIX, etc.)

Cross-platform

(Windows, Linux,

UNIX, etc.)

Primarily Windows

(Linux support

introduced)

Scalability

Moderate scalability;

suitable for small to

medium-sized systems

High scalability for

enterprise-level systems

High scalability for

large systems

High scalability for

medium to large

systems

Performance
Good performance for

general use cases

Optimized for high-

performance

transactional and

analytical workloads

High performance

for OLTP and

analytics

Optimized for

business intelligence

and OLTP

Support for

Features

- Basic support for

transactions, triggers,

and views

- Limited advanced

analytics

- No native partitioning

in community version

- Advanced features

(e.g., partitioning,

advanced analytics)

- Comprehensive

PL/SQL support

- High availability

features like RAC

- Strong analytical

and AI integration

- Native XML and

JSON support

- Strong integration

with .NET and

Azure

- Advanced analytics

and business

intelligence

Aspect
MySQL (Open

Source)
Oracle (Commercial)

IBM DB2

(Commercial)

SQL Server

(Commercial)

Ease of Use
Easy to set up and use;

beginner-friendly

Steeper learning curve

due to advanced

features

Moderate

complexity for

setup and use

Relatively user-

friendly, especially

for Windows users

Community and

Support

Large open-source

community; extensive

online resources

Enterprise-grade

support; smaller

community

Enterprise-grade

support

Strong enterprise

support and

moderate

community

Use Cases

- Web applications

- Content management

- Small to medium

businesses

- Enterprise applications

- Mission-critical

systems

- Banking and finance

- Data warehousing

- Large enterprise

systems

- Government

systems

- Enterprise

applications

- Integration with

Microsoft ecosystem

Customizability
High; open source

allows modifications

Limited to proprietary

extensions
Limited Limited

Detailed Comparison

4. MySQL (Open Source):

• Strengths:

o Free and open source, with an active community.

o Easy to use and set up, making it ideal for beginners.

o Suitable for web applications (e.g., WordPress, Drupal).

• Weaknesses:

o Limited enterprise features in the community edition.

o Lacks advanced analytics and native partitioning in the free version.

2. Oracle DB (Commercial):

• Strengths:

o Rich feature set for enterprise applications.

o Excellent performance for complex queries and large datasets.

o Comprehensive support for clustering and fault tolerance (RAC).

• Weaknesses:

o High cost of licensing and maintenance.

o Complex to manage, requiring skilled administrators.

3. IBM DB2 (Commercial):

• Strengths:

o Advanced analytics and AI integration.

o Highly optimized for large-scale OLTP and OLAP workloads.

o Strong support for XML and JSON data handling.

• Weaknesses:

o High cost, suitable for large organizations.

o Requires expertise for setup and maintenance.

4. SQL Server (Commercial):

• Strengths:

o Seamless integration with Microsoft products (e.g., Azure, .NET).

o Good balance of performance and user-friendliness.

o Strong support for business intelligence and reporting.

• Weaknesses:

o Primarily designed for Windows, though Linux support is improving.

o Licensing can be costly for larger installations.

When to Use Each DBMS

Scenario Recommended DBMS

Small to medium business applications MySQL

Enterprise systems with critical data Oracle DB

Advanced analytics and AI requirements IBM DB2

Windows-based systems or Azure integration SQL Server

Ans. 2

Ans. 3

 Relational Algebra Operations

Relational Algebra is a procedural query language used to query a relational database. Its operations retrieve data and

produce new relations as output.

1. Basic Operations

1. Selection (σ):

o Filters rows based on a condition.

o Example:

plaintext

Copy code

σ (Salary > 50000) (Employee)

Retrieves employees with a salary greater than 50,000.

2. Projection (π):

o Selects specific columns (attributes) of a relation.

o Example:

plaintext

Copy code

π (Name, Department) (Employee)

Retrieves only the Name and Department columns from the Employee relation.

3. Union (∪):

o Combines rows from two relations, removing duplicates.

o Example:

plaintext

Copy code

Student ∪ Faculty

Combines all entries from Student and Faculty.

4. Set Difference (-):

o Retrieves rows in one relation but not in another.

o Example:

plaintext

Copy code

Student - Faculty

Retrieves all rows in Student that are not in Faculty.

5. Cartesian Product (×):

o Combines rows from two relations.

o Example:

plaintext

Copy code

Employee × Department

Pairs every row of Employee with every row of Department.

6. Rename (ρ):

o Renames a relation or its attributes.

o Example:

plaintext

Copy code

ρ (Emp(EID, EName, EDept)) (Employee)

Renames Employee to Emp with attributes EID, EName, and EDept.

2. Advanced Operations

1. Intersection (∩):

o Retrieves rows that are common to two relations.

o Example:

plaintext

Copy code

Student ∩ Faculty

Retrieves entities that exist in both Student and Faculty.

2. Natural Join (⋈):

o Combines rows from two relations based on common attributes.

o Example:

plaintext

Copy code

Employee ⋈ Department

Joins Employee and Department where common attributes (like DeptID) match.

3. Theta Join (⋈θ):

o Combines rows from two relations based on a condition.

o Example:

plaintext

Copy code

Employee ⋈ (Employee.DeptID = Department.DeptID) Department

4. Division (÷):

o Retrieves tuples in one relation associated with all tuples in another.

o Example:

plaintext

Copy code

Projects ÷ Skills

Retrieves employees who have all required skills for a project.

Relational Calculus

Relational Calculus is a non-procedural query language where queries specify what to retrieve rather than how to retrieve

it. It has two types: Tuple Relational Calculus (TRC) and Domain Relational Calculus (DRC).

1. Tuple Relational Calculus (TRC):

• Queries specify conditions on tuples.

• General Form:

plaintext

Copy code

{ t | Condition(t) }

• Example:

plaintext

Copy code

{ t | t ∈ Employee ∧ t.Salary > 50000 }

Retrieves tuples t from Employee where Salary > 50000.

2. Domain Relational Calculus (DRC):

• Queries specify conditions on attribute values (domains).

• General Form:

plaintext

Copy code

{ <a1, a2, ..., an> | Condition(a1, a2, ..., an) }

• Example:

plaintext

Copy code

{ <Name, Department> | ∃ t (t ∈ Employee ∧ t.Name = Name ∧ t.Department = Department ∧ t.Salary > 50000) }

Retrieves Name and Department of employees earning more than 50,000.

Comparison of Relational Algebra and Relational Calculus

Aspect Relational Algebra Relational Calculus

Type Procedural Non-procedural

Focus Specifies how to retrieve data Specifies what data to retrieve

Complexity Easier to optimize and implement More user-friendly

Usage Used in query execution engines Basis for SQL language structure

Ans. 4

Distinguishing Query Processing and Query Optimization

Aspect Query Processing Query Optimization

Definition
The steps a DBMS takes to interpret and execute a

query.

The process of improving a query execution plan

to reduce resource usage.

Focus
Transforming a high-level query (e.g., SQL) into a

low-level plan for execution.

Choosing the most efficient execution strategy

for the query.

Objective
Ensure the query is executed correctly and

produces the desired result.

Minimize the cost of query execution (e.g., time,

memory, CPU).

Techniques

Involved

Parsing, validation, logical and physical query plan

generation.

Cost estimation, selection of algorithms,

reordering operations.

Aspect Query Processing Query Optimization

Example Processing an SQL query to compute results.
Choosing between nested loops or hash joins for

a join operation.

Example of Query Processing and Optimization

Query Example:

sql

Copy code

SELECT E.Name, D.DeptName

FROM Employee E, Department D

WHERE E.DeptID = D.DeptID AND E.Salary > 50000;

1. Query Processing:

o SQL is parsed and validated.

o Logical plan: Create a cartesian product of Employee and Department, filter rows where DeptID matches

and Salary > 50000, and project Name and DeptName.

o Physical plan: Execute the operations using specific algorithms (e.g., nested loop join).

2. Query Optimization:

o The optimizer evaluates multiple strategies, such as:

▪ Join Ordering: Perform the Salary > 50000 filter on Employee first to reduce the number of rows

before the join.

▪ Algorithm Choice: Use a hash join instead of nested loops if Employee and Department are

large.

o The most cost-effective plan is selected.

Cost Functions for Select and Join Operations

1. Select Operation (σ):

Cost is determined by how the selection condition is evaluated:

• Full Table Scan: Scans all rows in the table.

o Cost = Number of blocks in the table.

• Index Scan: Uses an index to locate rows matching the condition.

o Cost = Cost of searching the index + Number of data block accesses.

• Example:

sql

Copy code

SELECT * FROM Employee WHERE Salary > 50000;

o Full Scan: If no index exists, all rows are scanned.

o Index Scan: If an index on Salary exists, only relevant rows are accessed.

2. Join Operation:

Cost depends on the algorithm used:

• Nested Loop Join:

o Cost = BR×BSB_R \times B_SBR×BS, where BRB_RBR and BSB_SBS are the number of blocks for

relations R and S.

o Example:

sql

Copy code

SELECT * FROM Employee E, Department D WHERE E.DeptID = D.DeptID;

Every row in Employee is matched with rows in Department.

• Sort-Merge Join:

o Cost = Cost of sorting R + Cost of sorting S + Cost of merging.

o Efficient for sorted data or equi-joins.

• Hash Join:

o Cost = Building a hash table on R + Probing the hash table with S.

o Ideal for large, unsorted datasets.

